Sains Malaysiana 53(11)(2024): 3651-3661

http://doi.org/10.17576/jsm-2024-5311-09

 

Sintesis dan Pencirian Zarah Silika Berongga dalam Aplikasi Biosensor DNA

(Synthesis and Characterization of Hollow Silica Spheres as DNA Biosensor Application)

 

EDA YUHANA ARIFFIN1, LEE YOOK HENG2 & SITI AISHAH HASBULLAH2,*

 

1Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

2Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 21 May 2024/Accepted: 13 August 2024

 

Abstrak

Pembangunan model biosensor DNA berasaskan zarah silika berongga sebagai tapak pemegunan DNA boleh digunakan di dalam aplikasi biosensor DNA. Zarah silika berongga berjaya disintesis dan pencirian dijalankan dengan menggunakanmikroskop elektron pengimbasan pelepasan medan (FESEM), kalorimeter imbasan pembeza (DSC), penganalisis saiz zarah dan pembelauan sinar-X (XRD). Isi padu rongga, luas permukaan khusus dan penyebaran saiz rongga diukur dengan menggunakan Micrometric ASAP 2020 melalui kaedah Brunauer-Emmett-Teller(BET)/Barret-Joyner-Halenda(BJH). Surfaktan Tween 20, Triton-X dan CTAB dengan suhu dan masa tindak balas yang berbeza digunakan dalam penghasilan zarah silika berongga. Berdasarkan analisis FESEM dan BET/BJH, zarah silika berongga yang disintesis dengan menggunakan surfaktan Tween 20 pada suhu 27 °C dan tindak balas dijalankan selama 8 hari mempunyai luas permukaan yang paling besar. Zarah silika berongga ini digunakan dalam pemegunan prob DNA E. coli dan didapati biosensor ini menunjukkan kebolehpilihan yang tinggi terhadap DNA sasaran E. coli. Ini disebabkan oleh zarah silika berongga mempunyai tapak pemegunan prob DNA yang tinggi dan kadar penghibridan juga meningkat. Kajian ini sangat penting dalam menghasilkan zarah silika berongga sebagai tapak pemegun DNA bagi biosensor DNA yang dibangunkan.

 

Kata kunci: Biosensor DNA; pencirian; sintesis; zarah silika berongga

 

Abstract

Development of DNA biosensor model based on hollow silica spheres as DNA immobilization sites can be used for DNA biosensor application. Hollow silica spheres were successfully synthesized and characterized using field emission scanning electron microscopy (FESEM), differential scanning calorimetry (DSC), particle size analyzer and X-ray diffraction (XRD). Hollow volume, specific surface area and hollow size distribution was measured using Micrometer ASAP 2020 through Brunauer-Emmett-Teller(BET)/Barret-Joyner-Halenda(BJH) method. Tween 20 surfactant, Triton-X and CTAB with different temperature and different reaction time was used in synthesizing hollow silica spheres. Based on FESEM and BET/BJH analysis, hollow silica spheres synthesized using Tween 20 surfactant at temperature 27 °C and the reaction carried out for 8 days have the largest surface area. Hollow silica spheres was used in E. coli DNA probe immobilization and it was found that this biosensor showed high selectivity against E. coli DNA target. This is due to the hollow silica particles having high DNA probe immobilization sites and increased hybridization rates. This new finding is so valuable in making hollow silica spheres as DNA immobilisation sites for the developed DNA biosensor.

 

Keywords: Characterisation; DNA biosensor; hollow silica spheres; synthesis

 

REFERENCES

Alqasaimeh, M., Lee, Y.H., Ahmad, M., Raj, A.S.S. & Tan, L.L. 2014. A large response range reflectometric urea biosensor made from silica-gel nanoparticles. Sensors 14: 13186-13209.

Ballem, M.A., Córdoba, J.M. & Odén, M. 2010. Influence of synthesis temperature on morphology of SBA-16 mesoporous materials with a three-dimensional pore system. Microporous and Mesoporous Materials 129: 106-111.

Bueno, V. & Ghoshal, S. 2020. Self-assembled surfactants-templated synthesis of porous hollow silica nanoparticles: Mechanism of formation and feasibility of post-synthesis nanoencapsulation. Langmuir 36: 14633-14643.

Caruso, F., Caruso, R.A & Mohwald. 1998. Nanoengineering of inorganic and hybrid hollow spheres by colloical templating. Science 282: 1111-1114.

Carvalho, A.M., Cordeiro, R.A. & Faneca, H. 2020. Silica-based gene delivery systems: From design to therapeutic applications. Pharmaceutic 12(7): 649.

De Lange, M.F., Vlugt, T.J.H., Gascon, J. & Kapteijn, F. 2014. Adsorptive characterization of porous solids: Error analysis guides the way. Microporous and Mesoporous Materials 200: 199-215. 

Deng, Y., Lettmann, C. & Maier, W.F. 2001. Leaching of amorphous V- and Ti- containing porous silica catalyst in liquid phase oxidation reactions. Applied Catalysis A: General 214(1): 31-46.

Grinenval, E., Basset, J-M. & Lefebvre, F. 2013. A novel approach to prepare well-defined silica supported polyoxometalate species by reaction with a chlorinated support. Journal of Inorganic Chemistry https://doi.org/10.1155/2013/902192

Guo, H., Qian, H., Sun, S., Sun, D., Yin, H., Cai, X., Liu, Z., Wu, J., Jiang, T. & Liu, X. 2011. Hollow mesoporous silica nanoparticles for intracellular delivery of fluorescent dye. Chemistry Central Journal 5: 1.

He, F., Zhuo, R.X., Liu, L.J., Jin, D.B., Feng, J. & Wang, X.L. 2001. Immobilized lipase on porous silica beads: Preparation and application for enzymatic ring-opening polymerization of cyclic phosphate. Reactive and Functional Polymers 47(2): 153-158.

Huang, X., Young, N.P. & Townley, H.E. 2014. Characterization and comparison of mesoporous silica particles for optimized drug delivery. Nanomaterial Nanotechnology 4: 1-15.

Information for users of METTLER TOLEDO thermal analysis systems. 2000. UserCom 1/2000.

Jain, A., Rogojevic, S., Ponoth, S., Agarwal, N., Matthew, I., Gill, W.N., Persans, P., Tomozawa, M., Plawsky, J.L. & Simonyi, E. 2001. Porous silica materials as low-k dielectrics for electronic and optical interconnects. Thin Solid Films 398-399: 513-522.

Khodaee, P., Najmoddin, N. & Shahrad, S. 2018. The effect of ethanol and temperature on the structural properties of mesoporous silica synthesized by sol-gel method. Journal of Tissues and Materials 1: 10-17.

Khoeini, M., Najafi, A., Rastegar, H. & Amani, M. 2019. Improvement of hollow mesoporous silica nanoparticles synthesis by hard-templating method via CTAB surfactant. Ceramics International 45: 12700-12707.

Lee, B., Kim, Y., Lee, H. & Yi, J. 2001. Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents: The introduction of surface hydrophilicity onto the surface of adsorbents. Microporous and Mesoporous Materials 50: 77-90.

Maqbool, Q., Chanchal, A. & Srivastava, A. 2018. Tween 20-assisted synthesis of uniform mesoporous silica nanospheres with wormhole porosity for efficient intracellular curcumin delivery. Chemistry Select 3: 3324-3329.

Morey, M.S., O’Brien, S., Schwarz, S. & Stucky, G.D. 2000. Hydrothermal and postsynthesis surface modification of cubic, MCM-48 and ultralarge pore SBA-15 mesoporous silica with titanium. Chemistry of Materials 12(4): 898-911.

Mourhly, A., Khachanil, M., Hamidi, A.E., Kacimi, M., Halim, M. & Arsalane, S. 2015. The synthesis and characterization of low-cost mesoporous silica SiO2 from local pumice rock. Nanomaterials and Nanotechnology 5: 35.

Nakanishi, K., Tomita, M. & Kato, K. 2015. Synthesis of amino-functionalized mesoporous silica sheets and their application for metal ion capture. Journal of Asian Ceramic Societies 3: 70-76.

Narayanan, V. 2008. Synthesis of mesoporous silica microsphere from dual surfactant. Materials Research 11(4): 443-446.

Nguyen, A-T., Park, C.W. & Kim, S.H. 2014. Synthesis of hollow silica by stöber method with double polymers as templates. Bulletin Korean Chem. Soc. 35(1): 173-176.

Nguyen, N.H., Truong-Thi, N-H., Nguyen, D.T.D., Ching, Y.C., Huynh, N.T. & Nguyen, D.H. 2022. Non-ionic surfactants As co-templates to control the mesopore diameter of hollow mesoporous silica nanoparticles for drug delivery applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 655: 130218.

Okada, K., Shimai, A., Takei, T., Hayashi, S., Yasumori, A. & MacKenzie, K.J.D. 1998. Preparation of microporous silica from metakaolinite by selective leaching method. Microporous and Mesoporous Materials 21: 289-296.

Pagliaro, M. 2009. Functionalized Silicas: The Principles in Silica-Based Materials for Advanced Chemical Applications. RSC Publishing. hlm. 1-34.

Sun, R., Wang, W., Wen, Y. & Zhang, X. 2015. Recent advance on mesoporous silica nanoparticles-based controlled release system: Intelligent switches open up new horizon. Nanomaterials 5: 2019-2053.

Ulianas, A., Lee, Y.H., Sharina, A.H. & Tan, L.L. 2012. An electrochemical DNA microbiosensor based on succinimide-modified acrylic microspheres. Sensor 12: 5445-5460.

Xin, C., Wang, X., Liu, L., Yang, J., Wang, S. & Yan, Y. 2020. Rational design of monodispersed mesoporous silica nanoparticles for phytase immobilisation. ACS Omega 5: 30237-30242.

Xuefeng, D., Yu, K., Jiang, Y., Bala, H. & Wang, Z. 2004. A novel approach to the synthesis of hollow silica nanoparticles. Materials Letters 58: 3618-3621.

Yoncheva, K., Popova, M., Szegedi, A., Mihaly, J., Tzankov, B., Lambov, N., Konstantinov, S., Tzankova, V., Pessina, F. & Valoti, M. 2014. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide. Journal of Solid State Chemistry 211: 154-161.

Zhang, Z., Dai, S., Fan, X., Blom, D.A., Pennycook, S.J. & Wei, Y. 2001. Controlled synthesis of CdS nanoparticles inside ordered mesoporous silica using ion-exchange reaction. The Journal of Physical Chemistry B 105(29): 6755-6758.

Zielinski, J.M. & Kettle, L. 2013. Physical Characterization: Surface Area and Porosity. Intertek Chemicals and Pharmaceuticals. hlm. 1-6. 

Zoldesi, C.I. & Imhof, A. 2005. Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Advanced Materials 17(7): 924-928.

 

*Corresponding author; email: aishah80@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next